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conjectures were lacking; accurate criteria for the appropriate combination of

Summary, , i
)
The objective of therescarch program under Grant No, DAHC |
|

04-75-G-0152, extending from 1 June 1975 to 31 May 1978, has been to gain an

understanding of the electromagnetic propagation and diffraction properties of

concave surfaces having radii of curvature large compared to the wavelength,
with application to ground wave propagation, large reflector antennas, and :
mutually coupled conformal antenna arrays.

This basic objective has been accomplished, When the program was
initiated, there was only inéoxnplctc and non-conclusive information available
on how the radiation, diffraction and guiding of fields is affected by a nearby
large-radius concave surface, It was recognized that neither a geometrical t

optics nor a whispering gallery mode representation is satisfactory for descrip- : S

tion of the field, and that a mixture of rays and modes, or a more complicated
formulation involving a canonical integral analogous to the Fock integral for

convex surfaces, may be the most effective. However, the foundations for these

rays and modes were not at hand, nor were comprehensive numerical comparisons

to assess the utility and quality of various field representations, Missing also

were tractable results for the case when the observation point approaches the

source or when the radius of curvature of a circular contour tends to infinity

(infinite plane limit), |
Our work has succeeded in establishing a sound analytical basis for

any of the above-mentioned field formulations, Most important, we have shown

that a mixture of ray-optical and whispering gallery mode fields alone, éhos en

in correct proportion, is indeed capable of providing accurate field values on

the concave surface (so far taken to be a circular cylinder). Exhaustive numeri-

cal calculations have provided reliable comparisons of different field representa-

tions and have permitted a critical evaluation of their accuracy and sensitivity

to error or to parameter changes, The results produced under this
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contract are the most complete yet available, and they have yielded basic
insights into the physical mechanisms that establish the concave surface field.

Two manuscripts, accepted for publication in IEEE Transactions on Antennas
and Propagation, and attached in the Appendix, summarize these accomplishments
which are therefore not detailed here:

1. "High Frequency Fields Excited by a Line Source Located on a Perfectly
Conducting Concave Cylindrical Surface'", by T, Ishihara, L,B. Felsen and
A. Green, and

2. '"High Frequency Fieclds Excited by a Line Source Located on a Concave
Cylindrical Impedance Surface', by T, Ishihara and L.B. Felsen,

A third manuscript, almost completed, extends these studies to the three-
dimensional case of point source excitation.

The following papers were given at technical meetings:

"Excitation of Large Concave Surfaces'", by L.B, Felsen and A, Green,
IEEE/AP-S International Symposium, University of Massachusetts, Amherst,
Mass,, October 10-15, 1976.

"Ground Wave Propagation in the Presence of Smooth Hills and Depressions',
by L.B. Felsen and A. Green, AGARD Symposium on EM Propagation Characteristics
of Surface Materials and Interface Aspects, held in Istanbul, Turkey, October 18-19,1976
and published in the Symposium Proceedings.

"Effects of Smooth Elevations and Depressions on Ground Wave Propagation',
by L.B. Felsen and T. Ishihara, URSI Symposium on Propagation in Non-Ionized
Media, held in La Baule, France, April 28-May 6, 1977,

"High~Frequency Currents Excited by a Line Source Located on a Concave
Cylindrical Surface', by L,B. Felsen and T, Ishihara, URSI International EM Wave

Theory Symposium, Stanford University, Palo Alto, California, June 20-24, 1977,




"High- Frequency Ficelds Excited by a Line Source Located on a Concave
Cylindrical Impedance Surface'", by T, Ishihara and L, B, Felsen, 1978
International URSI/AP-S Symposium, Washington, D, C., May 15-19, 1978,

"High- Frequency Behavior of Concave Surfaces' by L. B. Felsen,

Invited paper, 18 URSI General Assembly, Helsinki, Finland, August 1978,
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APPENDIX

1. High Frequency Fields Excited by a Line Source Located on a
Perfectly Conducting Concave Cylindrical Surface, T. Ishibara,
L.B. Felsen and A, Green,

2. High Frequency Fields Excited by a Line Source Located on a
Concave Cylindrical Impedance Surface, T. Ishihara and L, B. Felsen,
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1. High Frequency Fields Excited by a Line Source Located on a

Perfectly Conducting Concave Cylindrical Surface
by

T. Ishihara, L.B. Felsen and A. Green
Department of Electrical Engineering
Polytechnic Institute of New York
Farmingdale, New York 11735

Abstract

Alternative representations are obtained for the high frequency surface
field excited on a perfectly conducting concave circular cylinder by an
axial magnetic line current located on the surface. Included are ray
optical, canonical integral, whispering gallery mode and near field formu-
lations, and various combinations of these. Asymptotic evaluations in
differént parameter ranges lead to results with varying accuracy and
physical content. Their utility is assessed by extensive.numerical cal-
culations and comparisons. Most intriguing is a form of the asymptotic
solution that involves only a number of gcometric optical rays and a

number of whispering gallery modes.

. This work was sponsored by the U.S. Army Research Office, Durham..
North Carolina, under Contract No. DAHC 04-75-G-0152.
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I. Introduction

When high frequency fields impinge on a concave perfectly conducting
surface, the induced surface currents can be well approximated by their
physical optics values since the entire surface is illuminated. Phraséd
alternatively, the method of geometrical optics is adequate to describe
the surface field behavior. However, when actual sources or induced
equivalent sources (for example, at an edge termination) are located very
near or on the surface, geometrical optics becomes inapplicable because
the multiply reflected ray fields (Fig. 1) have caustics that lie near the
boundary (Fig. 2). Therefore, it is necessary to account in some other
manner for the fields that would be contributed by rays having undergone
many reflections.

A systematic study of the problem can be undertaken on the prototype
configuration of a circular cylinder. Since a thorough understanding of the
axially. independent two-dimensional case is essential for extension to
three-dimensional fields, attention is focused here on the problem of
excitation by a magnetic line current located on the concave surface and
oriented parallel to the cylinder axis. Starting from a rigorous formulation
of the Green's function problem, one may extract from the azimuthally
periodic solution for the closed surface a portion1 that describes only the
propagation characteristics between points Q and P in Fig. {. Results
obtained therefrom ar.e applicable to concave surface segments that are
open, and they are in a form suitable for subsequent generalization to
variable surface properties. This basic representation, given as a con-
tour integral, is the starting point for the present study, which has as its
goal the exploration of alternative field representations that are useful for

calculation in various parameter ranges. Included are ray-optical, canonical
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integral and whispering gallery mode (Fig. 3) solutions, and various
combinations of these. Strong emphasis is placed on the physical inter-

pretation of the results, and on their relative accuracy. Most pleasing

from a physical standpoint is a field solution that comprises a mixture of
(N+1) geometric optical rays and M whispering gallery modes, with criteria |
provided for the proper choice of N and M.

In the course of the presentation, reference is made to the sparse
relevant literature on this problem1 -3. For certain of the alternative
representations. we have performed extensions ax}d refinements of previous
results but others obtained here, in particular, the above-mentioned ray and

. whispering gallery mode combination, are new. The conclusions derived

from this study, supported by extensive numerical calculations, provide a
thorough understanding. both physically and quantitatively, of the propa-

gation characteristics of perfectly conducting concave cylindrical surfaces.

Séme extensions to non-circular and(or) surface impedance boundaries

1,34

have been considered elsewhere , as has the case of point source

excitations.
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II. Alternative Field Presentations

A. Green's Function Formulation

We consider the prototype problem of line source radiation inside a
perfectly conducting circular cylinder of radius a. To make the analysis
relevant to the propagation along concave surfaces in general, it is neces-
sary to remove the azimuthal periodicity imposed on the fields in the cylin-
drical p = (p, ¢) geometry, where p represents the radial and ¢ the
angular (azimuthal) coordinate. This can be done by extending the range
of the ¢ coordinate from its physical periodic domain 0 < ¢ < 2 into an

infinite domain -x<¢ < x 6. Such an extension implies that angularly

. propagating waves originating at the source point (p', ¢') are outgoing

toward Id:l = «; this "angular radiation condition" can be realized by placing
at some angular location away from the source angle &' a perfect absorber
for angularly propagating waves. Such an absorber has, however, the
undesired property of generating diffraction at the radial coordinate origin
p =0. Therefore, when considering propagation phenomena ascribable
only to the cylinder surface, it is desirable to remove the spurious dif-
fraction effects from the total field solution.

The line source Green's functionin the cylindrical domain 0 < p < a,
-¢ < $ < , can be constructed by the method of separation of variables
and expressed in its most general form as a contour integral involving the
two one-dimensional characteristic Green's functions gp and € for the
radial and angular domains, respectivelyb. When the Green's function is
represented in terms of angularly propagating waves, the corrasponding
eigenmode spectrum in the radial domain involves a discrete (whispering
gallery mode) and continuous portions. The latter accounts in part for

propagation phenomena associated with the portion of the concate boundary
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lying between the source and observation points (this is the desired contribu-

tion), and in part for the spurious difiraction effects of the angular absorber.

When the spurious effects are removed and cognizance is taken of the high-

frequency nature of the analysis, onc may show that the relevant propagation

characteristics along the portion of the concave boundary lying between
the source point Q and the observation point P in Fig. | are contained

in the partial Green's t'u_nct:ion1

{ eiV l ¢'¢' I
G(p.P' ) = 2 (2) dv . (1)
e i(wka) C H'v (ka)JJ(ka)

- where k is the free-space wavenumber, the prime on the cylinder
functions denotes the derivat‘ive with respect to the argument, and a time
factor exp (-iwt) is implied. It has been assumed in (1) that P and Q
both lie on the boundary (i.e., p = p' = a) and that the boundary condition
requires that the normal derivative of the Green's function vanishes at

p = a; this makes G propoftional fo the axial component of magnetic field.
The contour C and the singularities of the integrand in the complex

v -plane are shown in Figure 4. Contributions from the pole singularities

v arising from
m

J"J (ka) =0, mel, 20 (2)
m

are found to describe whispering gallery modes. While (2) has an infinite

number of real solutions as indicated in Fig. 4, only those with Re vm> 0

represent spectral contributions in the angular transmission representation

which includes also a continuous spectrum.

"




B. Whispering Gallery Mode and Continuous Spectrum Representation
The spectral representaticn comprising a discrete (whispering gallery

mode) portion and a continuous portion may be obtained directly from (1) by

deforming C in Fig. 4 into a contour extending along the imaginary v axis:
Ml
G =) G_+Ry (3)
m=1 1 :
where M1 is the total number of pole.s satisfying Re Voo > 0 and
+i0
ly l b-0' l - 1] a3 :
Ry = 1 . e 7 dy 2_11; O[e-kalcb-cb Ismhvdv, ka>>1 (4a)
1 i(rka)  -iw H; (ka)JL(ka) '

is the continuous spectrum. Following Wa.sylkiwskyj,3 the first integral may

be simplified to the second form shown and also to

f-lz-[_l_‘lo(ks) -Y (ks)] , s= a|p-¢'| (4b)

where go is the Struve function and Yo the Neumann function. Each

residue contribution Gm represents a whispering gallery mode of the form

v, lo-6'] -1
i )
a3t ,_(ka) [‘a’" J',,(ka)] = A8,
- vm .

On use of the uniform asymptotic formulas given by

1
J, (ka)",‘/r{;-fo—s*‘-; 0* Ai[-¢] + Vv =kasinw
J '(ka)~ ZCOSW '% A.'
v % ka i i'[-0]

03/2.-:-2-}(3 [cos w - (-'ZL- w) sinw ], Re w>0

(6)
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which are justified here, one finds

exp (iks sinw _ + in/2)

- S0s W . (7)
m ka(w/2 wm)coa W

The roots W, are determined by solution of the resonance equation

. 2% iy 3/2
cosw - (w/2- \\m) sinw = == 0 (7a)
whcr_e Ai'(-onl) =0 , m=i.2...s Ml'

C. Ray-optical Representation

To generate a ray-optical formulation, one replaces H'V(Z)(ka) and

JL(ka) = {H\:“)(ka) + H:’(z)(ka)}/?. by their Debye asymptotic forms

D~ »
HL(I.Z)(ka)f\, ,/—‘—1%(%— exp {i ika [cosw - (-z'L -w)s'mw]iig} (8)

Rew>0, {ka[cosw-(-—%—-w)sinw]}2/3>>l ‘ (8a)

where v = ka sin w. Utilizing the traveling wave expansion

(1)
- H
1 2 ?\ nn (ka)
- = (-1)'r, r= i |r|<l. (9)
Jv(ka) H;(Z)(ka) n=0 H;(Z)(ka)

in conjunction with (8), one reduces (1) to a series of integrals

0
as Y o, (10)
nz'-‘O = )
where
G ~ L (D" [ exp[ikaq (w)] dw 104
n w C[' - 9, i
n

- e o ————

R = ———y
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and

q (W) = |6-¢'] sinw+ 2(ntl) [ cos w - (%- w) sinw] . (10b)

The saddle points of q (w), as obtained from dqn/dw =0, are |
n

. l:b-dt'l - o ; :
L ke ol [ R Tl S (1) '
and thus lie on the real w axis between w = 0 and w = w/2. A typical path Cx'x

through the nth saddle point is shown in Figure 5. The original path mapped

from the y plane can be deformed into C;‘. The Debye approximations in (8)
are valid in this relevant region of the complex w-plane. Use of the conven-

tional saddle point formula for evaluation of the integral in (10a)yields

) ian =
in/4 2 .\n e
G ~e¢ — (-1) (12)
n rk
: .,’ Dn
where
D, = 2(nt]) a sin (le-o'l/2m+)] . (12a)

This result corresponds to a direct or multiply reflected ray as depicted
in Figure 1. and could have been constructed directly by ray-optical
techniqués.

Although the series in (10), with (12), formally contains ray contribu- )
tions with an arbitrarily large number of reflections, these are suspect
since the saddle points, from which they are derived all cluster about
w = w/2. Thus.-the. asymptotic method, whereby each saddle point is treated
as isolated, is inadequate. Moreover, (8) be.comes invalid as w — n/2,
thereby invalidating the simplification of the integrand, on which the saddle
point evaluation is based. It is therefore necessary to truncate the number

of legitimate ray-optical terms at some n =N such that w_u is sufficiently

less than n/2.




D. Ray plus Canonical Integral Representation
. In view of the above observations, one may employ instead of (9) the

partial expansion

1 2 n n '3 N+1 N¢1 (13)
. . G i S A e el G R
Jv(ka) I{L(*)(ka) oo JL(ka)
Substitution of (13) into (1) yields
N
G = }: G_+ Ry (14)
n=0
where
|-
{ e N+l (_1)N+1 dy (15)

RN i(wka)z “« B Q’(ka)J'(ka)
v v

The sum in (14) evidently describes ray contributions having experienced

up to N reflections. The remainder integral RN incorporates the cumulative

effects of ray fields having been reflected more than N timies. It should be

noted that when the observation point approaches the source point so that

|¢-¢'| — 0, one has o ka even for n = 0, and the ray representation

fails altogether. When N = - ], no ray contributions are extracted and (15) 5
agrees with (1). .
. " Several options are open for dealing with RN' One possibility is to
explore under what conditions the contributing range of the integrand is

localized so that approximation methods may be used effectively. To this

end, the cylinder functions are first replaced by their uniform asymptotic

approximations in terms of Airy functions. From the behavior of the inte-
grand over the contour C in the y-plane or the contour C' in the w-plane,
it may then be shown that the principal contribution to the integral arises

from the vicinity of y = ka or w = n/2 provided that the arc length parameter

&
i o ot
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1/3
y=(& 2 (162)
and the number of rays are related by the criterion (note that we designate

a ray having undergone N reflections as the (N+i)th ray)

gy - 10N )

2(2'Pa) 2(2¥3a}

where A = A(ka) = O(1) is chosen appropriately. When the left-hand side of
the inequality is negative, i.e., in the region near the source, no ray-

optical contributions are included. The first inequality in (1 6b) is required

to assure that the integrand in (18a) decays away from t = 0. The second

inequality in (16b) (and the inequality in (21a))is required to validate use of
the Debye approximations in the first term in (13), which yields the geometric
optical ray contribution.

Our criterion in (16b), the utility of which is confirmed by the numerical

calculations in Sec. III, differs somewhat from that obtained by Babich and

Buldyrevl. The numerical factor A in the inequalities (16b), and also in

(21a), is not rigidly fixed. This implies that the location of the point at
which a geometric-optical ray field splits off from the remainder field
c-an be vaAried. In each specifie problem, the factor A should be chosen
such that the discontinuity in the total field is a minimum when the new
geometric-optical wave emerges. The estimated value of & = O(1) can be
determined from a knowledge of the point of emergence of the direct ray.

This point can be found by comparing the numerical results of the direct

ray plus canonical integral representation here, or of the direct ray plus

. whispering gallery mode representation (Sec. E), with that of the exact solution

(whispering gallery mode and continuous spectrum representation). In this
manner, onc finds from (16b) or (2f1a) with N = 0 that y = 3.1 whence
A= 2 (see Figs. (8), (10) and (11)). This value of A is then used in (16b)

to determine the splitting off points of the various reflected rays, It turns

- C———



i out that the results are not very sensitive to the choice of A because of

the overlap of the curves for various N. Therefore, A can be determined
from the first overlap region for N = -1, N = 0, without the need of per-

forming the comparison with the exact solution.

1/3

Changing variables to t via v =ka + (ka/2) "/t and using

(1)
o) ~ - (& 2/3 @ 0. T (ka)~ - (%,2/3 Ai'(t) (17
4 :

where w1(t) = Ai(t) ¥ i Bi(t) one may write (15) as

2
N+{ iks 2/3
(-1) © ka
~ (=5 Ig(Y) (18)
3 N S 2 N
where
y : iyt w!' (t) 7} N+

- e {

. IN(Y) i ét Ai"f(t) w‘Z(t) [W'Z(t) ] " ()

The contour Ct in the t-plane is inferred from the mapping and Fig. 4 by
observing that v = ka corresponds to t =0. The integral in (18a) is ir a
canonical form analogous to the Fock integral for convex surfaces. Tabula-
tions exist for selected ranges of y and N.9 When N = -1, the resulting ex-
pression in (18) is a valid representation for G in the range of small Y.

N = 0 defines the domain of the direct ray, N =1 the domain of the direct

plus singly reflected ray, etc.

E. Ray plus Whispering Gallery Mode Representation
An alternative possibility is to represent RN as a whispering gallery
mode sum plus an explicit remainder. If C is deformed into Cy in Fig. 4,

M residues at the poles LY of the integrand lying between C and CN
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must be extracted. One finds

Ry * mzl Cm * Bun (19)

where Gm is given in (5) or (7). The remamder integral RMN is the
same as RN except for the replacement of C by CN. It may be shown

(see Appendix) that the remainder integral Ry can be approximated by
=i
R # - e Q.. . (20)

provided that observation poinsts are characterized by WeN (WM+ WM-H.)/Z'
i.e., for saddle points WoN well removed from the pole singularities

(see Section III for a discussion on procedure when this condition is not

satisfied). Thus,
= i -
G ZGB+ gi Gm- —Z—GN _ (21)
n= m=1{

The number of rays, (N+1), is picked according to the criterion

N+ig —hHh—7s (21a)

T MR
F. Near Field and Infinite Plane Limits
. Except for the whispering gallery mode plus continuous spectrum

representation in Sec. B, which is not convenient for numerical computation,
the other formulations cannot account for the limiting case y=0 in (16a),
which arises either when the observation point approaches the source point
(s =0 with a fixed) or when the radius of curvature becomes arbitrarily
large (a = with s arbitrary but fixed). The latter limit traces the transi-

tion from a concave to a plane surface and, if a is allowed to become

negative, from concave to convex. We have derived the transition functions




for these cases.

We begin with G expressed by (18), with N = -1, and use the Wronskian
relation for the Airy functions together with Cauchy's theorera applied to

the upper half of the t-plane to infer that, equivalently,

iks +o0- 16 .
. e ka ,2/3 - iyt  Ai(t)
e 2w ka (2 ) -céj-ié . Ai'(t) dt (22)

Employing large argument expansions, one may show that

p 0 a : A :
_ai o ¥ i .34
Al'(t) 5 (143))/2 * 00 /z) -w<arg t<0 (23)

where a_, a;, ... a4 are given by -

a =1, a;= -1/4 L a,= 7/32, a;= -21 /64

v
a,=0.7143531708 , a. = -2.071282248 ,a, = 7.557254769 i
4 5 3
. ] (23a)
! a,= -33.32008068, ag=161.5948751 , ag = -1019. 868939
a,o = 6845.104932 ﬁ
Then by Laplace inversion of (22)7
10 ;
c-3 uMs) | ) b y3/25 4 043373 z (24)
=0

where bo' LRI blO are given by

b=t ., b= Jm é‘"/4/4 ., by =-7i/60

b3=-7Jn—e‘"/4/sxz. by -0.4398134 x 1072

by = 0. 1122861 10731 , (24a)

b5=-o.4zo9687x10’3JT sir/4
5

b= 0.9182121 x10-5 Ji~ &i"/4 bg= 0. 2093046 x 10"

by = 0.1637812x 1076 7 e 7/4 | b, = -0.3623427x10°7

L All the terms shown have been used for subsequent numerical evaluation of G.
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Actually, the inversion yiclds for the factor outside the braces in (24) the
large argument approximation of (i/Z)HL“(ks). the Green's function for an infinite
perfectly conducting plane. By inserting the exact limiting value of a — o,
thé formula in (24) may be applied as well in the near field of the source.

To trace the transition from concave to convex curvature when the
distance s along the surface remains fixed, we allow a to change contin-
uously from positive to negative values via the complex excursion
0<arga<m To keep s = a |¢ -¢ 'l positive, it is necessary simultaneously
to have arg H) - 'I =- arg a. Moreover, one must continuously deform the
integration path in the complex t-plane to keep the integral convergent
(exp(iyt) oscillatory) when y is allowed to become complex according to the
rules stated above. These considerations lead to a straight line path along
which argt = -7/3, 2.17/3, when arg a = m. Changing variables t=y exp(i2n/f3),

one finds

olks 'w(u

Z'rrka w

G~ eVl g, (25)
where y is again given by (16a) and the path Cp proceeds along the real p
axis. The expression in (25) is the known result for the field on the surface
of a convex perfectly conducting cylinder. By contour deformation about the
singularities pp at w'l(p.P) = 0, one derives the creeping wave series, and by
expansion analogous to (23) and Laplace inversion the limiting transition as
y — 0. Thus, one may track the field continuously as the curvature changes
from concave to convex between fixed source and observation points on the

surface.
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IlI. Numerical Results

Extensive numerical computations have been performed for ka = 10,
30, 50, 100 and 1000 to check the accuracy and range of validity of the
various formulations in Section II. Results are presented in Figs. 6 - 12
for ka = 10, 100 and 1000 only since all of the relevant formulas apply to

ka

30 and 50 with accuracy similar to that obtained for the larger values

ka

100, t000.
Except for the low (ka) values (ka = 10), the whispering gallery mode

and continuous spectrum representation in (3), for arbitrary y, has been

taken as the reference solution, with which the other results are compared.

The failure of this representation for low (ka), as evidenced by the oscillations

in the curves in Fig. 8(a) for small y, 1is attributed to difficulties in

evaluating the eigenvalues of the whispering gallery modes with sufficiently :
high precision; for the larger (ka) values, the uniform approximations in

(6) are adequate. A remarkable feature of this representation is the

sensitivity of the field to the exact number M1 of whispering gallery modes,

as evidenced in Fig. 6 for ka = 100. I:Iere. M1 = 32, and any deviation from ﬁ
this number causes oscillations about the true field magnitude.

It can also be seen from Fig. 6 that as the number of whispering
gallery modes approaches Ml = 32, the field magnitude also approaches the
true value. The continuous spectrum is necessary to establish the near
field for moderate y. Analytically, this means that the Neumann function
in (4b) together with the discrete spectrum (wh:‘ 2ering gallery modes)

produces the proper singularity near the source point. Omission of the

continuous spectrum leads to errors that can be assessed in Fig. 7.
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The ray plus canonical integral representation in (14) is seen to pro-

vide an excellent approximation for all cases (i.e.. for ka= {o, 100, 1000)
as shown in Figs. 8(a)-(c) provided that the number of rays (N+1) is chosen
according to the criterion in (16b). Because of the.overlap of the curves for
various N, no difficulty arises in switching from one formulation to the other
as y varies. Tabulations of the canonical integral in (18a) are given in
reference 9 for the perfectly conducting boundary and for non-vanishing sur-
face imﬁedance. When ka is small, this representation may serve as a
.reference because it does not exhibit the sensitivity (see Fig. 8(a)) encountered
with the whispering gallery mode and continuous spectrum formulation. As
shown in Fig. 11(a)., the ray plus canonical integral representation for small
ka agrees well with the near field expansion in (24).

The most intriguing and physically most appealing formulation is based
on the mix of (N+{) rays and M whispering gallery modes in (21). 'i‘he
whispering gallery modes plus the last term in (21) account for the field near
the surface whgre geometrical optics becomes invalid. Because of the in-
equality (21a) that must be satisfied by the number of rays, N+i, the inclusion
of multiply reflected rays requires larger separation v between source and
observation points. For any given N, as Yy increases in its applicable range, :
a new whispering gallery mode must be included whenever the N-times re-
flected ray touches the caustic of that mode. The process for N=0 is depicted
in Fig. 9a. The concentric circles show the modal caustics of the whispering
gallery modes while the angle w,. represents the eigenvalue of the K-th mode.
Within the ranges of P, P2 and PK' one must include the M=1, M=4 and
M = K modes. Corresponding curves for |G| are shown in Fig. 10. It
should be noted that the direct ray plus whispering gallery mode rep-

p 1 R\
resentation yields a good approximation for vy 2 2(2 ’&8)* . Thls
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representation, however, is not recommended for large values of y since
many modes must then be included. For example, N =0, M = 24, at
y = 10.

Inclusion of reflected rays, when appropriate, reduces the number of
required whispering gallery modes, as depicted in Fig. 9(b). Thus, at
the observation point P(a.$). inclusion of on1y4the direct ray (N=0) requires
six whispering gallery modes while inclusion of the direct and singly re-
flected rays (N =0,1) requires only a single mode, etc. Fig.9(b) also shows;
that the applicable range of the single mode plus ray representation becomes
wider as the number of ray-s increases. As seen from Figs. 11{(b)-(c), it
is possible to represent the field accurately with only the lowest (most
tightly bound) whispering gallery mode provided that a higher order reflected
ray is included, whén necessary, as Y increases. Accordingly, although
(21) is a good representation for the ranges satisfyir;g the inequality (21a),
the simplest and physically most appealing expression will be (21) with the
inequality (16b). Figs. 11(a)-(c) have been obtained with the inequality (16b).
These results are surprisingly simple compared with the whispering gallery
mode and continuous spectrum representation, for which 32 modes for
ka = 100 and 319 modes for ka = 1000 must be included in order to obtain
.accurate field values. In Figs. {i(a)-(c), the number indicated along the
curves should be read as follows: for example, M=2 [N=1].denotes the
range wherein the direct and singly reflected rays plus 2 whispering gallery
modes are applicable, while the circles indicate the starting points of the
relevant intervals.

Analytically, the emergence of a whispering gallery mode (contact of
ray and modal caustic) is characterized by the coalescence of a pole and a

saddle point in the remainder integral RMN' Therefore, the field in (21)
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is discontinuous at these points. The discontinuity can be avoided on use
of a Fresnel integral transition fv‘mction8 in the vicinity of these Yy values.
However, we have found that cortinuity can be established by using the
simple result when pole and saddle point coincide (this corresponds
essentially to the midpoint between the two discontinuous endpoints) and
then resorting to a perturbation expansion.

The ray and whispering gallery mode representation is invalid in the
near field but it can there be joined to the near field expansion in (24). Con-
cerning the latter, it should be noted in Fig. 12 that inclusion of more
perturbation terms does not lea;d to continuing improvement or extension of
the range of validity; for ka = 100, the perturbation terms up to yzl/zseem
to give the best result. The near field forms with 8 perturbation terms are
shown in Figs. 11(a)-(c) for ka =10, 100 and 1000, respectively. From
each figure, one can see that the changeover from the near field form to
the direct ray plus lowest whispering gallery mode (i.e., M=1) representa-

tion can be performed at the crossover with negligible error.

-

. -—-,
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IV. Conclusions

This analytical study of the characteristics of the surface field induced

on the concave side of a perfectly conducting circular cylinder by a magnetic
line source located on the surface has furnished a basic understanding of the
propagation mechanisms that are opurativeAi.n various parameter ranges

involving source and observation point location, cylinder radius and wave
frequency. Alternative represgntations of the field solution have been given
and their relative accuracies assessed by extensive numerical calculation.
“The results have been discussed in detail in Section III. They permit, in
particular, a quantitative appraisal of when, and under what circumstances,

geometrical optics begins to play a role, and how the geometric optical field

must be modified to account either for near field effects or for improperly .
_formulated ray fields that have undergone many reflections. Quite re- !
’ markal;ly. the latter can be accounted for by inclusion of only a single (the

most tightly bound) whispering gallery mode and a partial ray field, although

other possibilities exist that incorporate several whispering gallery modes.

The asymptotic field solutions have been cast in a form that permits

generalization to variable surface curvature or variable surface impedance4.

.

although some questions remain to be resolved.

Calculations for surfaces with finite surface impedence Z have also

been performed, as have tabulations of the numerically evaluated canonical
integral, for Z =0 and selected values Z # 0. These results will be

presented elsewhe reg.
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+ Appendix - The Remainder Integral R, ..

As noted in the text, the remainder integral RM.N is the same as
R'N in (15) except for the replacement of C by CN in Fig. 4. With the

aid of the Wronskian relation

: 0 () (xa) =
inka J! (ka) H(?) (ka) £y &, Ga) H! () (ka)

RMN can be represented by

!

(2)

k . 1 -

(J‘:( a) : H ~'(ka) N+ iy -4 S (27)
J, (ka) H‘:(Z)(ka

& 2 (-1 )N-!-i
MN~ 2nka é
N

Along the contour CN » one may use in the integrand the Debye asymptotic
formulas (see (8), and similarly for the undifferentiated cylinder fuhctions)

to obtain

N+ .
RyN .(;12__ ( tan ;ka[cosw - (lzr--w)sin wl+ -}f -i)elkan(w)d
(28)
where qN(w) énd woN 2T given in (10b) and (11), respectively. If
(WM_H + w )/2 the asymptotic evaluation involving the tangent

sN
function in the integrand of (28) yields a negligible contribution compared

with the remaining term. In this case, referring to (10a) and (12),

. 1.
RMNz - _Z-GN ' (29)
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FIGURE CAPTIONS

Direct and multiply reflected rays for a circular boundary.
Reflected ray caustics.

Caustics A for rays reflected n times; these ray con-
tributions are confined to the region between A and the
boundary.

Caustic formation due to singly and doubly reflected rays.

Whispering gallery mode: modal field, modal rays and caustic

Integration path and singularities in complex v -plane.
(2)
- ' R i 1
x zZeros v of Hv (ka); zZeros v of Jv (ka).

Cn is the steepest descent path through P

Integration paths and singularities in complex w-plane

(v =ka sin w). C' corresponds to C in Fig. 4 and can be

deformed into the steepest descent path C/ through W o ‘
v

«e -~ zeros w__ of J'(ka); the poles w_ are not shown.
m v P
Whisper.ing gallery (W.G.) modes plus continuous spectrum.
Few modes.
Many modes.

Effect of continuous spectrum

' Ray plus canonical integral representation, Both the y and

l¢- ¢' coordinates are indicated. The ranges in y and

(-0 correspondmg to N = -{ (no geometric-optical ray)
in (14), N = 0(1 ray), N =1(2 rays) and N = 2(3 rays) are as
shown,

whispering gallery modes and continuous spectrum

o——e o = Ry | « = =[O Ry
i
— . —  —— IngoG + R ' — & — § w— 0§ c——— 'n=OG + R ’
ka =10
ka = 100
ka = 1000
Geometrical interpretation of direct ray plus'whispcring |

gallery mode representation

N = 0 (direct ray only)
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N=0, t, 2

Direct ray plus whispering gallery mode representation.
M = K indicates point of emergence of K-th W.G. mode.
The solid curve is calculated from (3).

Ray plus whispering gallery mode representation. The solid
curves serve as reference solutions, Here, the |<b~d>'|
coordinate is not shown since it has been depicted in Figure 8.

M=K[N=0] S

S e s B 90
O—ewe=eo= lGl a0 Yelai © '%GN=1|
M=1[N=2] 2

REDIpE, T | Pt 20Cn* G %GN=2|
--------- near field form

ka = {0 (M1=3). The solid curve is calculated from (14) and

ka =100 (M1=32). The solid curve is calculated from (3).

ka

1000 (M1 =319). The solid curve is calculated from (3).

Near field form. ka = {00
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2. High Frequency Fields Excited by a Line Source

Located on a Concave Cylindrical Impedance Surface
by

T. Ishihara and L.B. Felsen
Department of Electrical Engineering
Polytechnic Institute of New York
Brooklyn, New York {1201

Abstract

A previous study of high frequency currents induced by a line source
on a perfectly conducting concave cylindrical surface is extended té. the case
of non-vanishing surface impedance Za' Alternative field representations
are formulated and evaluated asymptotically as combinations of ray optical,
whispering gallery mode, surface'wave, continuous spectrum, and canonical
integral contributions. Numerical calculations pr-ovide an insight into the
accuracy and utility of the various formulations. Sufficiently far from the
source point, a combination of ray optical fields and tightly bound whisper-
ing gallery modes was previously found to be a most appealing form when
Z' = 0. As the surface irﬁpedance becomes more dissipative, the whisper-
;ng gallery modes are weakened by attenuation and eventually render the
ray optical fields adequate by themselves. A representation in terms of

rays and a canonical integral is found to be useful for all parameter ranges.

The canonical integral has been evaluated numerically and tabulated.

This work was supported by the U.S. Army Research Office, Durham,
North Carolina, under Contract No. DAHC 04-75-G-0152.
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I. Introduction

When high-frequency fields impinge on a concave surface with large
radius of curvature, the induced fields thereon differ markedly from those
for the well explored convex case. A recent sts.xdyl has dealt in detail with
the two-dimensional problem posed by line source excitation on the interior
boundary of a perfectly conducting circular cylinder. Alternative field
representations, accoun‘ting only for propagation phenomena on the surface
segment between source and observation points, were formulated and
evaluated asymptotically. The field expressions so obtained were.inter-
pretable physically in terms of consfituents involving whispering gallery

modes, ray-optical fields, near field effects, continuous spectrum and 1

canonical integral contributions. Extensive numerical comparisons showed

the accuracy and range of applicability of each. This investigation has ¢
provided fundamental physical and quantitative. insight into the field be-
havior on the perfectly conducting boundary.

In the present paper, the analysis is extended to accommodate sur-
faces with non-vanishing surface impedance Zs. Because the alternative
field representations (Section II) for Zs # 0 are derived by the same
techniques as those for Z‘ = 0, the presentation is kept concise, with
frequent reference made to the earlier study1 for some of the details.
Representative numerical calculations in Section III show hov.v increasing
surface impedance affects the surface field. When losses are appreciable,
the closely bound whispering gallery modes are rapidly attenuated, leaving
a properly formulated ray-optical field as the dominant and adequate

contributor.
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II. Alternative Representations

A. Basic Green's Function

The relevant magnetic line source Green's function fér the interior
of a circular cylinder with radius a and constant surface impedance Zs
is formulated in an infinite angular space wherein the azimuthal coordinate
¢ ranges from -cwoto +oa. . With the source point located at (p', ¢')
in a cglindrical (p, ¢) coordinate system, the Green's function satisfies the
inhorhogcneous wave equation

82

¢

-
ap

( +

i
5 +K%) Glp, p') = - 8(4-6)5(p-p') (1)

i 2 R
p 9p pt

“with an "angular radiation conditiod' in the ¢ direction, and the radial

boundary condition

-g-;(_}zikZ'G atp=a ; : G finite at p = 0 (1a)

Here Z' = Zs/Zo is a normalized surface impedence, and Zo is the

impedance of free space. A time factor exp(-iwt) is suppressed.

Expressing the Green's function G as a contour integral and re-
moving diffraction effects at the origin arising from the "angularly matched"
conditionz, one obtains a modified form that contains only the essential
propagation phenomena .from the source point to the observation point in
the presence of a cylindrical boundary segment. When the source and
observation points are both located on the impedance boundary (i.e.,

p = p' = a), the modified Green's function G becomes

i é’ e&p(iVJ b-d' b dv (2)
i(nka’ € [J! (ka)-i2'J, (ka)] (1% (ka) - iz H () (ka)]

G=
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where k is the free-space wavenumber, and the prime on the cylinder
functions denotes the derivative with respect to the argument. The contour
C and the singularities of the integrand in the complex v -plane are shown

in Fig. 1. In the lossless limit Z' =0, this formulation reduces to the one

in reference {,

Anticipating subsequent contour deformation in the complex v-plane,

we examine the location of the pole singularities L, determined by the

resonance equation

J", (ka) -iZ'Jv k) =0, m=1,2,v.qy Ml' Revm> 0 (3)
m m

"These poles in the integrand of (2) describe whispering gallery modes. For

the special cases arg Z'= % 90°, the roots Vo, 2re real, If for arg Z'=-90°,

the magnitude ]Z'] of the normalized impedance is greater than a certain
value, one finds for the first root m=1 that vy > ka., The corresponding
field contribution then describes a surface wave that can exist also on a
plane boundary. It is interesting to ‘note that all of the whispering gallery
modes represent fast waves when the boundary is perfectly conducting. ’
However, for Z' 5= 0, there may exist slow-wave type whispering gallery
modes with Re L > ka, which become surface waves when Im L 0, i‘n

addition.

To facilitate the numerical evaluation of the poles in (3), it is A

convenient to separate the domain Re Yor ¥ 0 into two parts. In one of
these, where |v |= ka, the Fock approximations for the bessel

functions are applicable:

e -
J, (ka) =~ (2/ka)3Ai(t) J)(ka) ~ -(2/ka) 3A1' (t)
(4)

1 2
Hii ' 2)(ka) ~ (z/ka) 3 wl 3 Z(t) i H:}’* ' 2)(1(3.) b '(2/1(3) 3 W'i : Z(t)

where

w 'Z(t) = Ai(t) ¥ i Bi(t), v =ka + (ka/Z)%t (4a)

|
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The resonance'equation for the first M whispering gallery modes bound

most closely to the impedance surface is then approximated by ‘
4 by o ka,}
' = = = ZH

Ai'(t ) +iaAi(t_) =0, m=1,2,..., M, a-Z(z (5a)

where the tm are solutions of the differential equation

¥
P

dtm $ :
= —L ) t=-ia

|

(5b)

1
In the other domain, where lv -ka‘>0(|u‘ 3) , one may employ the Debye -

approximations

7, (ka) ~ 2 sin [¢(w) + w /4]

mka cos w

J"'(ka.)"' , Zszzw cos [L(w) + w /4] (6)

(“
H(z)(k ) = / nkacosw exp[+it(w) F ir /4]
(1)

1:1;,(2’ (ka)~ /-2—“—%’51’ exp [+ iL(w) + in /4]

*with

t(w) -ka[cosw (rr /2 w)sm w] v =kasinw, Rew >0 (6a)

to obtain the resonance equation

cosw_ cos'[;(wm) + /4] - i2' sin[L(w ) + m/4] =0, m=M+,... M D




It is found that the two approximations in (5a) and (7) have an operlapping
domain wherein one may switch from one to the other. For the case in

i
Fig. 2, M= 4 has been found satisfactory. j
:
E.

B. Whispering Gallery (W.G.) Mode and Continuous Spectrum
Representation
When the contour C in Fig. { is deformed into a contour ex-

tending along the imaginary v—axis, the Green's function can be represented

as a sum of whispering gallery (W.G.) modes Gm ‘and a continuous spectrum

M .
i M1
6= )} G _+R, 8)
m=1 i
where

3, (ka) expliv o=t +in /2] e
Cm = Ka(a/av) 3] (ka)-1Z'T, (kal} @
v =y

with the L satisfying the resonance equation in (3). In obtaining the

residue contributions in (9) due to the poles at ¥or ,_the Wronskian

relation
S ;. e H P ca)
imka [ B2 (ka2 B2 (k) | [3) (k) -i2' (k)] 2| 0 (kead-i21 (k) Hka) -2 B ca)

(9a)
has been utilized, Using the Fock approximations in (4) and (5), one

finds ' ‘ R

exp(iks + iytm-in/Z)

, metie. M (10)

G
m z(ka/zﬁ(tm+ %)




= Ta

where

1
e P N (102)

Here, s denotes the path length between source and observation point
along the boundary, and vy is an arc length parameter. For the remaining

modes, (6) and (7) may be used to obtain

exp(iks qm W + i /2) -
Gm"’ 3 i m=M+l...Ml
. 1
ka(w /2-.wm)co‘s wm[l (Z2' [cos wm) ]

(11)

From the behavior of the roots as discussed in Section A, one can see that the
residue contribution arising from the m={ pole singularity at ty (the first
root of (5)) describes either a whispering gallery mode bound most closely

to the impedance boundary or a surface wave mode when Re t > 0,

“i;n i‘ = 0 In the latter instah‘cé; G{

As in the lossless case, the continuous spectrum

‘irn “(I 0) becon‘xes‘ a surface wave IiAél.d:“ﬁ

o WO ¢ exp(iv |o-o'])
"M, = 2 @) e
{  i(wka)” -ix [J“) (ka)-iZ'J (ka)] [H"' (ka)-iZ'H} (ka)]
can be approximated by 4
i 7 exp(-ks sinhv)
R ~ = = dv i2a)
My "5 1.(2'/coshv)? (

C. Ray-Optical plus Slow Wave Representation

With a view toward a ray-optical representation, it is com;;:ﬁ;ent

to deform the contour C in Fig. 1 into C, whence G becomes

G=G + G, Ult) : g (13)

s L e o5,

"



where G is the same as G except for the replacement of C by C in (2),
and CJ1 is the contribution (if any) from the pole singularity at ty located
between C and C. The unit step function U(ty) contributes only when
the ty pole lies between the two contours. The extraction of Gl' which
may be either a slow wave W.G. mode or a surface wave, is desirable
since slow wave fields do not exhibit ray-optical properties.

To convert G into ray- optical form, we substitute the traveling
wave expansion

1 o e &
J‘: (ka)-lZ'JV (ka) HL(Z)(ka)'lz'Hv(Z)(ka) n=0

(-0 |rl<t (14)

H‘:“)(ka)-iz'ﬂv(”(ka)
r= 14
H (%) (ka)-i2! H (% (ka) e

into (2), with G and C replaced by G and C, respectively. Then with

the Debye asymptotic formulas in (6), changing variables from v to w via

v = ka sinw,

G = i Gn (15)
n=
where
n
S ___(-i > coszw . [ cosw-2"' ikaqn(w) P (15a)
n w é;; (cosw+Z‘)2 cos wtZ'

and

qn(w) = |¢-¢‘ lsinw + 2(n+1)[cos w-(w /2-w)sin w) (15b)

The integral in (15a) can be evaluated in terms of the contributions from

the saddle points w and Tvs of qn(w), determined from the condition dqn/dw=0:

“., =1_£.'-J.2_'LL w =

1
sn 2(n+1) £ s

(L]

(16)

"



wGs

A typical path C;\ passing through the n-th saddle point is shown in
Fig. 3 (note thatthe whispering gallery mode poles e have been eliminated
from the integrand in (15a)). Upon using the conventional saddle point

formula (ref.2, p.382) one finds

2
. (r )ncos w__ exp(ikD )
. G - eur/4 , ?.k (_i)n n sn 5 n (17)
" ® (cos Vo +Z') ',Dn

where

D = 2(n+1) asin [ |¢-.¢' l/Z(nH)] (17a)

and I"n is the boundary reflection coefficient for ray species n,

cos wsn-Z'
1-‘n = Cosw__+2' (17b)
sn v

The expression in (17) correspox;ds to a geometric-optical ray field that
has underg.one n reflections at the impedahce boundary (see Fig. 4). The
sum in (15) can actually not be extended to n— « since the DeBye approxi-
mations in (6) become invalid as W, ™% /2. This situation arises either
when the observation point approaches the source point so that |¢-¢'.l-' 0,
or when the number of rays increases, with |¢-¢"| fixed. The latter case
can be avoided by truncating the number of rays at some n = N such that

F WeN is sufficiently less than n /2 (see Sec. D) while the former case will

L - be discussed in Section F.

D. Ray plus Canonical Integral plus Slow Wave Representation

When instead of (14) the partial expansion

N+{
| - t . 2 (1) + (-r)
| Jv (ka) - iZ Jv (ka) H'V(Z)(ka) . iZ'HV(Z)(ka) S50 JL (ka) - iz'Jv (ka) .

(18)




-lyu~

is substituted into (2) (with G and C replaced by G and E, respectively),

one has instead of (13) and (15)

= 2 an +RN -l-Ci1 U(tl) (19)
where
1 N+ . ;
RN [ (2) ('YL e(.\;p)ixv J(b"d’ ll dv
z(rrka) € [H'v (ka) - iZ'Hv “(ka)] [J'v(ka) - iZ'JV(ka)]

(19a)

e — ———. — . ————— —————— e G, i i R - ~ S

Gn' given in (17), again describes a geometrical ray field having undergone

n reflections. The remainder term RN accounts for ray fields reflected

more than N times.

One way of dealing with (19a) is to investigate how fast the integrand
v
decays in the neighborhood of the point v =ka; rapid decay permits effective

truncation of the integration path and the use of further approximations.
Proceding as in the Z' = 0 case, 3 one may show that the main contribution
to the integral arises from the neighborhood of v =ka provided that the
arc length parameter y defined in (10a) and the number of rays (N+1)

* satisfy the left-hand portion of the inequality

- - 1 <(N#H) < —d—r , (20)
2(23a) 2(234)3

| e, F—— - e

| where A=A (ka, Z') = O(1) and |Z'| << 1. The right-hand porticn of the
. inequality validates use of the Debye approximations in the first term on .
the right-hand side of (18), which has been used to derive En in (17) The i
complete inequality in (20) provides a criterion for the number of geometric

optical ray fields that are identified in (19). The precise choice of A is

not too important; a value A = 2 has been found adequate in our various

numerical comparisom’,i ( Sec. III).

S N — e\ = 4



Since the contributing portion of the integrand in (19a) is localized

near v = ka, one may substitute the asymptotic approximations (4) to obtain

N+{ : 2 1
o~ (-1) > exp(iks) (1;_3)’ IN(Y'Q)' a=2|(_k_;_)3
2iwr ka

R

N (21)

Here, IN(y. a) is the canonical integral

[{\v'l(t) + i.uw1 (t)}/{wé (t) + iawz(t)} ]N~H

e = [ [ v Taw, @I TAT(0 ¥ Takim]
: .

Vi (22)

with the path Ct in the complex t plane obtained from C in the complex
v -plane by the shift implied in (4a ). The canonical integral in (22) has
been evaluated for relevant ranges of y and three values of a. The results
a:xze shown in Fig. 1l and have been tabulateds. The canonical integral for a
related boundary value problem corresponding to a different integrand and

to a =0 has been tabulated by Babich and Buldyrev. S v

E. Ray plus Whispering Gallery (W.G.) Mode plus Slow Wave
Respresentation

An alternative way of treating (19a) is to deform the contour Cinto CN
in Fig. 3andthereby representingRyasa sum of[M-U(tl)] W.G. modes whose
poles lie between C and CN' plus some other remainder term RMN'

Referring to (9a), one finds 4 -

RN-.-Q‘ G_ +Ryqy » ™ =1+4U(t) (23)
m=m
where
(2)
R o —_1—- JV (ka) ) P" (ka) (_r)N‘HeiV |¢-¢| Idv
MN~ 2rka JN J'V (ka)-xZ'Jv (ka) HL(Z)(ka)-iZ'HV(Z)(ka)

(24)
The sum in (23), with Gm given in (10) or (11), describes W.G. mode

—— ey

—contributions.




The evaluation of RMN in (24) may proceed by the saddle point
technique, after replacement of the cylinder functions by their Debye

approximations as in (6). The integral then becomes:

R

MN cosw-iZ'tan{{ (w)+ w/4} = cos wtZ' |lcos w+Z'

{25)

where. {(w) is given in (6a) and qN(w) in (15b). For observation points such
that the saddle point WoN of (25) is located far from the pole singularities
of the integrand, and for a low loss impedance, the contribution from the
first term inside the square brackets in (25) is negligible when compared

with that from the second term. Then from a comparison of (25) with (15a)

and (17)
w § = YAl
RMN 7 GN a- cosS W ) G (26)
sN
Thus . —
o = 1o z
G 2 Gn +% Gm'ZGN(l'__cosw ) (27)
. B T

F. Near Field Form

As observed at the end of Section C (see also (20)), any Green's
function representation that includes geometric optical terms fails in the near
field where the arc length parameter y in (10a) is less than 2(2% A)%. We
therefore go back to the basic integral representation in (2). Since the main
contribution to the integral arises from the vicinity of v = ka, the cylinder
functions may be replaced by their Fock approximations in (4) .
Then using the Wronskian relation for the Airy functions (analogous to (9a)) and

applying Cauchy's theorem in the upper half of the complex t-plane, one finds

N+1 N+
~ (-i) é‘ [coswtanﬁ(w)+rr/4} _icosw } cos w-2' eikan(w)dw
am
N

T —

il




G~

-exp(iks)  ka +o-13

(
2w ka 2 _w%is

Ai(t)exp(iyt)

Ali'(t) +iaAi(t)

dt

. (28)

Employing large argument expansions for the Airy functions, one may

generate an asymptotic expansion of the integrand in (28):

. a.

Ai'ﬁ(ttz)(t}r T " ,-go 'tFﬁ]W'?f + o(t~2%/2 (29)
where all of the terms retained (i.e., up to j = 21) were employed in
subsequent numerical calculations. The coefficients L RN ST
are given by i

L
12_0 i l(la) , j =3
a = é; 4 JNCT R B TE¥
T R jesre
1=0 !
where i 3
" 4 1=t dj"L_‘=-(j-z)/4 , 4 g=1/32
4 1,-2795.1,L-2 +9/32 + 2(j-7)/32, for j = 3L+1, 3L+2, (L2 2)
4 12791, L-3 +9/32 +2(j-7/32, for j=3L(L>3)
dg o =-21/64 dw.o=-49/64 d“.0=-85/64
. dy, o=0.71435 d12.1=-130/64 di3 =1.64062
dyy 4=~ 185/ 64 dyg 0° 2.811982 dyg, 1= -251/64
dyg o= -2.07128 dyg, 1= 4. 29687 dyg 5= -329/64
dyg, 0" -4. 64329 dyg g = 612059 dig. 2% -420/64  (29a)
dyq o= -7-81345 dyq (= 8. 34373 dyq 2= -525/64
' dyg, o= 755725 dyg (= 11.69283 dyg o= 11.02293
dyg, 3" -645/64 dig o= 16.57034 dyg 4= -16,4017

T Sy W—— ==
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dyq o= 14.21873 dyg 3= -781/64 d20.0= 27. 29129
dyg (= -22.09779 d,q 5= 17.99556 d,g, 3= -934/64
dyy o= -33.32008  d,, = 40.01068 d,y ,= -28.92270
dyy 4= 22.42181 dyy 4= -1105/64

Then by Laplace inversion of (28)? with (29),

3

iks+in/4 :
G G L # il b v+ o' . el 2 4 (30)
.‘-/2nks Jj=1 J
where
e W . .
T s ell '4‘3)/(1:,_1‘—)! . jodd (30a)
b, =
Yl uEn [ 2
22/ ca. ") n (2m-1), jeven
J m=1{

The restriction |a| < 1in (30) arises from the condition |aAi(t)/Ai'(t)] <1,
required for validity of the expansion in (29). In view of the definition of
a in (Sa), the solution (30) can therefore not be applied to the infinite

plane limit a —w if Z' differs from zero.




1II. Numerical Results

Extensive numerical computations have been performed for ka =100
and for various surface impedance values to show how the amplitude and
phase of the surface impedance affect the field, and to check the accuracy
and range of validity of the various formulations in Section IL

Concerning the propagation constants for the W.G. modes, we have
obtained solutions of the differential equation (5b) by the Runge-Kutta

method. The results are shown in Fig. 5. Here tys tz and tyare the first

-three roots of Ai'(tm) =0 (i.e., a =0 in (5a))and ;1, EZ and :3 are those

of Ai(;m) =0 (i.e., a =ccin (5a)). The solid.iines and the dotted lines are

equi-phase and equi-amplitude éurves, respectively. The arrows on the

equi-phase curves indicate the directions along the root loci with increasing

amplitude |§| It is interesting to note in Fig: 5 that the first zero t1 v
crosses the imaginary axis for some values of §, thereby furnishing the

slow wave type of whispering gallery mod;:. In particular, when Re t:1 >0,

Im t, =0, the contribution from t describes a surface wave mode.

i
Except for argZ' =+ 90° , the imaginary parts of the whispering gallery
mode poles become large as the amplitude of Z' increase.s within the
ranges under consideration (i.e., lZ'| < 0. 6). It should be noted in

Figs. 2 and 5 that, for given Z' and argZ2' # + 90°, the eigenvalues for
modes bound close to the surface have large imaginary parts compared to
those located far from the surface, thereby de-emphasizing the importance
of the most closely bound whispering gallery modes. This is to be expected
on physical grounds since the field of the tightly bound modes is in close

proximity to the lossy guiding surface. It can also be seen from Fig. 2

that the two approximations given in (5a) and (7) have an overlapping region

wherein one can switch from one to the other. M = 4 has been found

7
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satisfactory for our evaluation of the field.

e e s o S—

In Figs. 6-7, we have compared the various formulations in "
Section II for a purely inductive impedance case (‘Z'l = 0,22 and
arg Z' = -90°) to check accuracy and range of validity. For this case, the
surface wave mode is excited since the first root of (5a) or (5b) is located

on the positive real axis in the t-plane. The ray plus canonical integral

plus slow wave representation in (19) is seen to provide an excellent
approximation provided that the number of rays-(N+1) is chosen according
to the criterion in (20). Because of the overlap of the curves for various
N, switching from one formulation to the other can be performed smoothly.

The ray plus canonical integral contribution curves are shown separately

f to exhibit the effect of the surface wave on the total field. |

P

In Fig. 7, the near field form in (30) and the ray plus whispering
gallery mode plus slow wave representation in (27) are compared with the
whispering gallery mode (including surface wave) plus continuous spectrum
representation in (8). It is interesting to observe that for large enough vy, °

the total field can be accurately represented just by the surface wave

e —————————————_. O

(M=1) and by rays provided that the appropriate number of reflected rays
is included as y or |¢ - ¢',| increases.

Curves for a high loss case are depicted in Figs. 8(a) and 8(b),
based on the ray plus canonical integral representation and on the ray-
optical representation, respectively, with the latter implying omission

i i A_;f the canonical integral contribution. Having in mind an application to YT

ground wave propagation, the high loss impedance Z' = 0,22 exp (-i30. 5°)

has been obtained by assuming a wet ground surface with

2

conductivity o, = 10" 2mho m~! and dielectric constant €, = 10€_,
subject to a wave frequency f = 10MHz., Also shown in Fig. 8(b) is the

near field form for small y . It should be noted that G, in (19) does not

H——‘ ey 1

{P
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-for describing the field sufficiently far from the source point because of the

-1/~ ;

contribute since no pole singularity is located between the contours C and
C in Fig. ! (see also Section II-A). All of the modes here are fast waves

as seen from Fig. 2. Note that the ray-optical contribution alone is adequate

dissipative attenuation of the modes bound close to the surface,as mentioned

v s
|

previously. - |

The solid curves.in Figs. 6-8 are obtained from (8) with |
{= 32(ka=100). This form of the solution is taken as a reference for all ‘
Y . It was noted in the study of the perfect conductor casgi that the ;

M

numerical values derived from the W.G. mode plus continuous spectrum
representation are extremely sensitive to the exact number of modes re-
quired. Unless all 32 modes (for ka=100) are included, the perfect con-
ductor curve was found to deviate appreciably from the correct shape. The
same remark applies to the finite surface imp'edance case in Figs. 6-8

since the higher order modes have small attenuation coefficients (see Fig. 3
even though the losses may be large. Because of this: feature, it is pre-~
ferable to use one of the other representations for field calculation.

In Figs. 9(a)-(e), we have s.hown, for given phase of the normalized
impedance Z', how increasing the amplitude of Z' affects the surface
field. Curves are depicted based on the ray plus canonical integral plus
slow wave (if necessary) representation, and on the near field form for
small y . In our computations, 'Z' ,: 0.05 has been chosen as a sample of
a small impedance, and lZ'l = 0. 22 as a sample of a large impedanc.e. If
arg Z' = -90°, corresponding to a purely inductive impedance boundary, the
field amplitude increases as |Z'| increases (see Fig. 9(a’) while the con-
verse is true when the boundary impedance is purely capacitive (see

Fig. 9 (e)). This behavior may be attributed to the greater and lesser

v




confinement, r.espectively, of the lowest order modal field in the two cases.
As the imaginary part of roots increases (see Fig. 4),the field transmitted
to an observation point tends to decrease (Figs. 9(b)-(d)). Because of the
absorption on the surface, the interference effects between rays are also
weakened, as seen from the decreasi.né magnitude of oscillation in the
curves in Figs. 9(b)-(d). "

The curves in Fig. 10 show the effect of the phase of Z' on the
field when the amplitude remains constant at IZ' I'E 0.05. One observes
that the field tends to increase as the phase of Z' deviates from zero; this
could have been predicted from the behavior of poles in Fig. 5. Note that °

the maxima and minima of the field shift backward for negative phase (i.e.,

-90°s arg Z' < 0°) and forward for positive phase (i.e., 0°< arg Z' < 90°).




IV. Conclusions

A variety of alternative representations have been explored in this
L study of the surface fields excited by a line source located on a concave
cylindrical impedance boundary. As for the previously investigated
perfectly condﬁcting casei, these different formulations provide new in-
sights into the propagation mechanisms that prevail for various parameter
ranges involving the bouvndary shape, separation of source and observation
points, and the surface impedance. From the detailed discussion and in-
terpretation of the nume ricz%l results in Section III emerges the role played
by the geometric optical field and, for sufficiently inductive boundaries, by
the surface wave. The presence of the surface wave leads to an enhance-
ment of the ficld over that observed on a perfect conductor. When losses
are appreciable, attenuation of mode fields bound close to the boundary
establishes the geometric optical field as the dominant and adequate con-
stituent. The versatility of representations binvolving the canonical integral
has again been confirmed, and tabulations have been provided for several

values of surface impedance.

¢
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FIGURE CAPTIONS

FIG. 1 Integration path and singularitics in complex v -plane,
XX--Z€eros L'p of [Hl'/(z)(ka) - iZ‘Ii;&)(ka)]; ev -- zeros v of
[JL (ka) - iZ'JV (ka)].
FIG. 2 Zeros of [J') (ka)-iZ'J (ka)] in complex w.'piane',
eo--zeros for Z'=0 (perfect conductor); 00--zeros for Z'=0.05 exp(-i30.5°)
(small loss); D9 .., AA -- zeros for Z' = 0. 22 exp(~i30.5°)
(large loss). The first five roots AA -- are obtained from (5b)

and compared with @8 ~- obtained from (7).
FIG. 3 Disposition of integration paths
"FIG. 3(a) Steepest descent paths in complex v -plane

FIG. 3(b) Steepest descent paths in complex w-plane (v =ka sin w)

FIG. 4 Direct and multiply reflected rays for a circular boundary.
Geometrical quantities DO' Dl’ DZ' wsO' wsl and WSZ are a..lso
shown. )

FIG. 5 Roots of IAi'(tm) + iaAi(tm_)] as obtained from (5b). The

numbers on the solid and dashed curves denote the phase and

amplitude of § = -ia, respectively.

FIG. 6 Ray plus canonical integral plus slow wave representation in
(19), with Z'= 0: 22 exp(-190°). Both the y and [¢-¢']
coordinates are indicated. Also shown are the ranges in y and
‘¢-¢" corresponding to N = -1 ( ~—e—e— ) (no gecometric-optical
ray); N =0 (——)(1 ray); N=1 (—++=)(2 rays); N=2 (=)
(3 rays). The solid curve is calculated from (8) and serves as
the reference solution. The heavy curves include the surface
wave in (19) (U(tl) =1 for this case), while the light curves have

been obtained from (19) with the surface wave omitted, 7k




FIG. 7 R,ay plus W.G. mode plus slow wave representation in (27),
and near field form in (30) (--), with Z'= 0. 22 exp(-i90°).

The reference solution (solid curve) is calculated from (8).

The numbers indicated along the curves should be read as
follows: for example, M = 2 [N=1{] denotes the range wherein
the direct ray and singly reflected rays plus 2 modes (I W.G.
mode and | surface wave mode) are applicable, while the circles
indicate the starting point of the relevant intervals. The

|q>-¢'| coordinate is not shown since it has been depicted in

Fig. 6.

FIG. 8 Ray plus canonical integral representation in (19), and near
ficld form (--) in (30), with Z'= 0. 22 exp(-i30.5%) . Note that
U(tl) = 0 in this example (see Fig. 2). The reference solution

(solid curve) is calculated from (8).

FIG. 8(a) Canonical integral contribution RN included, ——o0~— N=-{;
—e= Nx0, —+o— N=1; —eee~ N=2

FIG. 8(b) Canonical integral contribution R'I'\I omitted. —++— N =1{;
—sae— N = i. -

FIG. 9 Influence of the amplitude of the surface impedance Z', cale

culated from (19) and (30) (--), for various phase angles. The
heavy curves representa large impedance (f? '| =0.22) and the light
curves a small impedance ([Z'[: 0.05). Here, U(tl) = 0 except
for the case Z'= 0. 22 exp(-i90°). —0—0~ N = -{; —+«= N =0;
~—se— N=1; and —+e+— N = 2,

| FIG. 9(a) arg Z' = -90°
b FIG. 9(b) arg Z' = -45°
A FIG. 9(c) arg Z2'= 0°

FIG. 9(d) arg 2Z' = 45°
FIG. 9(e) arg2'= 90°

FIG. 10 'Inﬂueh;_; of the phase of the surface impedance 2Z', calculated
\ from (19), with |2'| = 0.05.
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FIG. 10(a) Negative phase angle.
——arg Z' = 0% ~e—arg Z' = -45%;
~««—arg Z' = -90°

FIG. 10(b) Positive phase angle.
—garg Z! = 0% —+—i—arg2'= 45°;
~e—e—argZ' = 90°

FIG. 11 Plot of canonical integral IIN (y, @) vs. y.
Solid curves: . Z' = 0 (o = 0) (perfect conductor);
—e=t= 7' =0.05 exp(-i30.5°) or Rea = 0.16799,
Im a = - 0.09903 (small loss) ; —**— =

Z' = 0.22 exp(-i30.5°) or Rea = 0. 6997,

Im o = -0.41261 (large loss).
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